Postaraj się, aby był on jak najmniejszy. a)2/5 i 5/6b) 5/8 i 7/24c) 3/4 i 7/10 Odległość między dwiema płaszczyznami równoległymi i IT2 wynosi 12 cm.Punkty P i Q leżą odpowiednio na płaszczyznach ITI i 7T2.Jeżeli IPQI=37 cm, to r …
Dane są punkty A=(1,-4) B=(3,7) C=(2,6) a)Oblicz współczynnik kierunkowej prostej AB b)Napisz równanie prostej AB c)Sprawdź, czy punkt C leży na prostej AB Napisz równanie symetralnej prostej odcinka o końcach K=(11,1) i L(3,-6) jest prosta l: y=x-4 i punkty A=(2,-4). Oblicz odległość punktu A od prostej l. Odpowiedzi: 0 Report Reason Reason cannot be empty
Dane są punkty a = (-6, -4) i b = (6, 12). Punkt b jest środkiem odcinka ac, a punkt d jest środkiem odcinka bc. P P F F 700 dan otnici liczby vo liczba 7
gradziok Użytkownik Posty: 1 Rejestracja: 23 lut 2011, o 17:47 Płeć: Kobieta Lokalizacja: Polska Środek okręgu, dane trzy punkty Mam zadanie z matematyki, z którym nie mogę sobie poradzić: Punkty A=(-1,1) B=(-1,-3) C=(5,-3) leżą na jednym okręgu. Jakie są współrzędne środka okręgu? Bardzo proszę o szybką pomoc. Z góry dziękuję =) Ostatnio zmieniony 23 lut 2011, o 22:22 przez Crizz, łącznie zmieniany 1 raz. Powód: Nie podpinaj się pod cudze tematy. Crizz Użytkownik Posty: 4094 Rejestracja: 10 lut 2008, o 15:31 Płeć: Mężczyzna Lokalizacja: Łódź Podziękował: 12 razy Pomógł: 805 razy Środek okręgu, dane trzy punkty Post autor: Crizz » 23 lut 2011, o 22:23 Wskazówka: symetralna każdej cięciwy przechodzi przez środek okręgu (wystarczy znaleźć punkt przecięcia symetralnych dwóch cięciw).
To oznacza, że istnieją dwa ciągi arytmetyczne, których wyrazy spełniają podane w treści zadania warunki. Gdy r = 3, to a 1 = 4 - 2 r = 4 - 2 ∙ 3 = - 2, a gdy r = 1 5, to a 1 = 4 - 2 r = 4 - 2 ∙ 1 5 = 18 5. Ćwiczenie 1. Połącz w pary wzór ogólny ciągu arytmetycznego z odpowiednimi wartościami a 1 i r.
bananowy Użytkownik Posty: 17 Rejestracja: 9 mar 2008, o 18:58 Płeć: Mężczyzna Lokalizacja: Halinów Podziękował: 9 razy Dane są trzy punkty.. Dane są trzy punkty A(5;-2) B(-7;4) C(1;8). Napisz równanie prostej AB oraz oblicz odległość punktu C od prostej AB. Oblicz też pole trójkąta ABC. Dzięki anna_ Użytkownik Posty: 16299 Rejestracja: 26 lis 2008, o 20:14 Płeć: Kobieta Podziękował: 29 razy Pomógł: 3235 razy Dane są trzy punkty.. Post autor: anna_ » 13 sty 2009, o 18:14 1. Rownanie prostej przechodzącej przez AB-masz gotowy wzor 2. odległość punktu C od prostej AB-masz gotowy wzor 3. pole trójkąta ABC-masz gotowy wzor Poszukaj w ksiązce.
Dane są punkty A=(-4,1) i B=(2,-5) oraz prosta k o równaniu x+3y-6=0. Punkt C należy do prostej k i jest równoodległy od punktów A i B. Wyznacz współrzędne punktu C.
Środkiem odcinka \(AB\), gdzie \(A = (x_1, y_1)\) oraz \(B = (x_2, y_2)\) jest punkt: \[S=\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)\] Punkt \(S=(-4, 7)\) jest środkiem odcinka \(PQ\), gdzie \(Q=(17, 12)\). Zatem punkt \(P\) ma współrzędne A.\( P=(2, -25) \) B.\( P=(38, 17) \) C.\( P=(-25, 2) \) D.\( P=(-12, 4) \) CPunkt \(S=(3,-1)\) jest środkiem odcinka \(AB\) i \(A=(-3,-5)\). Punkt \(B\) ma współrzędne: A.\( (9,3) \) B.\( (9,-3) \) C.\( (-9,-3) \) D.\( (-9,3) \) APunkt \(S = (2, 7)\) jest środkiem odcinka \(AB\), w którym \(A = (-1, 3)\). Punkt \(B\) ma współrzędne: A.\( B=(5,11) \) B.\( B=\left (\frac{1}{2},2 \right) \) C.\( B=\left (-\frac{3}{2},-5 \right) \) D.\( B=(3,11) \) APunkt \(S=(4,1)\) jest środkiem odcinka \(AB\), gdzie \(A=(a,0)\) i \(B=(a+3,\ 2)\). Zatem A.\( a=0 \) B.\( a=\frac{1}{2} \) C.\( a=2 \) D.\( a=\frac{5}{2} \) DPunkty \( A=(13,-12) \) i \( C=(15,8) \) są przeciwległymi wierzchołkami kwadratu \( ABCD \). Przekątne tego kwadratu przecinają się w punkcie A.\(S=(2,-20) \) B.\(S=(14,10) \) C.\(S=(14,-2) \) D.\(S=(28,-4) \) CDane są punkty \(M=(-2,1)\) i \(N=(-1,3)\). Punkt \(K\) jest środkiem odcinka \(MN\). Obrazem punktu \(K\) w symetrii względem początku układu współrzędnych jest punkt A.\( K'=\left ( 2,-\frac{3}{2} \right ) \) B.\( K'=\left ( 2,\frac{3}{2} \right ) \) C.\( K'=\left ( \frac{3}{2},2 \right ) \) D.\( K'=\left ( \frac{3}{2},-2 \right ) \) DPunkt \(K=(-4,4)\) jest końcem odcinka \(KL\), punkt \(L\) leży na osi \(Ox\), a środek \(S\) tego odcinka leży na osi \(Oy\). Wynika stąd, że A.\( S=(0,2) \) B.\( S=(-2,0) \) C.\( S=(4,0) \) D.\( S=(0,4) \) APunkt \(S = (2,−5)\) jest środkiem odcinka \(AB\), gdzie \(A = (−4,3)\) i \(B = (8,b)\). Wtedy A.\( b=-13 \) B.\( b=-2 \) C.\( b=-1 \) D.\( b=6 \) AW układzie współrzędnych na płaszczyźnie dany jest odcinek \(AB\) o końcach w punktach \(A=(7,4)\), \(B=(11,12)\). Punkt \(S\) leży wewnątrz odcinka \(AB\) oraz \(|AS|=3\cdot |BS|\). Wówczas A.\( S=(8,6) \) B.\( S=(9,8) \) C.\( S=(10,10) \) D.\( S=(13,16) \)
Na osi liczbowej zaznaczono dwa punkty S i T. Odcinek ST podzielono na 12 równych części. Dokończ zdanie. Wybierz właściwą odpowiedź spośród podanych. Długość odcinka ST jest równa A. 1750 B. 1500 C. 1250 D. 1000 Zadanie 4. (0–1) Dane są liczby: I. 0,1(47) II. 0,1552 III. 0,1(5)
a) A(7, 2), B(3,-1)c) A(-4,-7), B(1,5)b) A(0, -3), B(-1,0) d) A(-5, 3), B(0, -2)Chcę dostęp do Akademii!
. 689 567 360 634 566 480 372 761

dane są trzy punkty a 7 4